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The generalized log-derivative method is applied to the coupled equations problem for 
collinear atom-molecule reactions formulated in terms of natural collision coordinates. A 
comparison with the “W-matrix propagation” method is made. The comparison is based on 
numerical tests performed on the H + Hz reaction. Some tests were made also on the asym- 
metric F+ H, system. In consequence of these tests two hybrid versions of the RXNlD 
program were developed. They are demonstrated to be about two times faster than the 
original version. #‘I 1987 Academic Press, Inc. 

1. INTRODUCTION 

The purposefulness of hybridizing the approximate solution and the approximate 
potential approaches within the invariant embedding technique [l] as a 
methodology of deriving efficient algorithms for solving the coupled equations of 
molecular scattering theory seems to be unquestionable. The VIVAS program 
[2, 31 has been developed in this way, and in the 1981 comparative study on 
numerical methods [4] it was found to be the most efficient program available for 
solving inelastic scattering problems. Despite the encouraging success of this 
program, however, to our knowledge, not much has been done since then to take 
advantage of the high eKiciency of hybrid methods in other fields of scattering 
calculations. Believing that this situations should be improved we have undertaken 
the investigations directed toward extending the use of hybrid methods to reactive 
scattering problems. 

Judging by the numerous quotations in the present-day literature, one of the best 
computational techniques devised for treating atom-molecule reactive systems is the 
“&?-matrix propagation” method [6, 7, S] coded in the RXNlD program [S]. This 
is a purely approximate potential-type method, however. So, a considerable 
improvement in efficiency could be expected if this method were properly combined 
with an approximate solution-type method of comparable quality. Two such 
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methods have become available recently. These are the “Y-matrix” methods 
[ 11, 121 derived as generalizations of the log-derivative method of Johnson [9, lo] 
and designed to solve the coupled equations problems formulated in the diabatic 
and in the nondiabatic representations, respectively. 

Both “Y-matrix” methods are adapted in Section 3 of this paper to the descrip- 
tion of collinear AB + C 2 A + BC reactions outlined in Section 2. In Section 4 
they are tested against the “g-matrix propagation” method on the case of the 
HS H, reaction and, to a lesser extent, on the asymmetric FS H, reactive system. 
All tests presented were performed with the use of properly modified versions of the 
RXNlD program. Much attention is paid to the construction of hybrid versions of 
this program and we demonstrate their superiority to the original version. 

2. THE COLLINEAR A + BC 2 AB + C REACTIVE SCATTERING PROBLEM 

To fix the terminology we start with a skechy description of the coordinate 
system which is used here as originally devised by Light et al. [6, 131. The reaction 
coordinate, U, is defined as an arc length along a specified reference curve (RC) and 
the vibrational coordinate, u, is measured along straight lines locally orthogonal to 
this curve. The reference curve is set on a given potential surface for the A-B-C 
system in a way basically consistent with the idea of a natural coordinate system 
(714, 151. 

The characteristic features of this particular system are 

(1) the discontinuity of RC at its crossing with the line dividing the con- 
figuration space into the arrangements channels: the channel CI containing the 
asymptotic A + BC configuration and the channel y containing the AB + C con- 
figuration, 

(2) the subdivision of each arrangement channel into two regions: the polar 
region (P) where the (RC) has nonzero constant curvature; l/a, and the Cartesian 
region (C) where RC becomes a straight line. 

The wavefunction expressed in the (u, u) coordinates satisfies the Schrodinger 
equation of the form: 

h2 i a2 L-4 2p 
--+~~,L’)+v(u,,,] Y(u,o)=EY(u,v) 
i+ad q au au 

and the following continuity conditions which should be imposed at the polar- 
Cartesian boundary in each arrangement channel, where U, = u,‘- c for a = ~1, y; 

YP = YC, 
i ayp i aye --=-- 

VP au, qc au,' 
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and at the common channel boundary where U, = 0 for a = c(, y; 

p, V, E denote the reduced mass of the A-B-C system, the potential and the total 
energy, respectively. u is the Jacobian of the transformation from the mass-weighted 
Cartesian to the (u, u) coordinates. It equals 1 + (v/a) in the polar and 1 in the 
Cartesian region of the u-coordinate [6]. Now, applying the factorization [20]; 

Yqu, u) = yI’;21+qu, u), 

and expanding the function $(u, a) in an appropriate basis of vibrational functions, 

(91(u; u), Qz(u; u),..., dN(K u)) = @*(u; u), 

which change along the reaction coordinate continuously (within one region at 
least); 

Ic/(u, 0) = @Yu; u)f(u), 

we can formulate the problem in terms of the following coupled equations; 

[ -$+A(u)$+B(u) f(u)=0 1 (3) 

and the following conditions for matching solutions of these equations, and their 
derivatives, i.e., the vectors 

f(u) 

i i 
-$fW 

= F(u), (3a) 

at the P-C and at the a-y boundaries 

YP(u P~c)~~(uP~c)~~Ppc~c(uP~c)~c(uP~~c), 

‘44yu, = 0) P(u, = 0) = I- F-” - YY’(u, = 0) P(z.4, = O), 

where 

(da) 

(4b) 

O-P-C- J - 

Y= 1 0 
( > p 1 ’ 

I- = 1 0 
( > 0 -1 (4d) 
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The matrices involved in this formulation are given by the expressions 16, 201, 

(5) 

(5a) 

[C,],, = (qqt’; up-c’ Irj- ‘)Q (!y(v; up C)), (6) 

iM,,,,=(m:i~~;~,=O)l(~)’ 1’A’2/~;(rY;~,=O)) fork=1,2, (7) 

where ( ) means integration over the vibrational coordinate and V,,(U, u) is the 
potential defining the vibrational basis employed, i.e., 

i -f$+ Vo(u, c)] q4i(V;U)=&;(U)~;(u;U). (8) 

The channel and the region labels are given where quantities for both channels or 
for both regions of a given channel occur in one formula. The matrix A is skew- 
symmetric as a result of the assumed orthonormality and reality of the basis 
functions, A ’ = -A, and vanishes at asymptotic arrangement channel boundaries, 
u,“, a = cx, y, where these functions are required to become independent of the 
u-coordinate (the first and the second derivatives are zero): 

lim A(u)=O. (9) 
u - u; 

If the basis is complete the matrices Ck and M, for k= 1, 2, satisfy the relations: 

q= c, 1) MT= M,‘, (10) 

and the following formula holds for the matrix B, 

B=b+;fA+;A*. 

The matrix b becomes constant and diagonal at the asymptotic boundaries: 

(11) 

lim [b(u)lo= [(k”)‘],= (kT)* 6, for a=a, y, (12) u - u: 
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where k,” = lk;l for open and k,“= ilk;1 for closed vibrational channelj (in the 
arrangement channel a). The matrix I_ in Eq. (4b) accounts for the change of sign 
of the (a/&)-derivative at the a-y boundary. 

To complete the specification of the problem we have to define the solutions of 
physical interest as those which grouped in the two matrices E;(u) and F,(U) satisfy 
the scattering boundary conditions: 

where O,= jk”J -‘I2 exp(ik”u,“) for a= ~1, y, and (i;-z :* ‘) represents the 
arrangement channel decomposition of the scattering matrix ?-The subscript of the 
solution matrix F denotes the initial channel. The information sought is the matrix 
of probabilities, 

P= 

for all transitions energically allowed in the process: 

(Put,, Lj = l(&+Ari12 for a, a’ = a, y. (14) 

N”P x N”P 0 0 

N,“P denotes the number of open vibrational channels in the arrangement channel a. 
Beside the nondiabatic representation chosen above (Eq. (2)) for the presentation 

of the problem, two other representations, namely the diabatic and the 
quasidiabatic representations, will be also used for finding the numerical solution 
by the algorithms given in the next section. In the remainder of this section we 
collect the formulas necessary to switch between the considered representations. 
The diabatic counterpart of F(U), denoted by 5$(u) = (Cd,$(yjGCU,), is generated 
through the relation, 

Y(u) F(u) = T(u; U) squ), (15) 

which involves the orthogonal transform T(u; U) = (‘(*,” ,Cu:Uj) defined as the 
solution to the problem 

[;+$4,,,] t(u;ii)-cl, t(ci;ii)= 1, 

where U is a fixed point. Thus, FJu) satisfies the equation 

(16) 

(17a) 
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where 

b,(u) = tT(z4; U) b(u) t(u; U). (17b) 

The conversion of F(U) to the quasidiabatic representation can be described as 
the following two-step procedure: 

Y(u)F(u)=~ B(u;-u) 8(u-u,-,) T(u; ii,) &(u) (18a) 

z C e(“j-U) e(U-Ui_ 1) T(U; U,) D(i) T(U; i), (18b) 

where 

u, = (u, + ui _ , )/2, D(i)=(df’ Ji)). 

and Q(u) is the step function: O(u) = 1 for u > 0 and Q(U) = 0 for u < 0. The first step, 
Eq. (18a), is the conversion to a sequence of diabatic representations defined dif- 
ferently for different sectors [ui_ , , u,] of the u-coordinate. The functions F(u; i), 
for i= 1, 2,..., constituting the quasidiabatic representation are introduced in the 
second (approximate) step as solutions of the equations; 

g.F(u;i)=(yi2(i) JF(u;i) for uE[u,+,,u;]. (19a) 

The matrices k*(i) occurring in these equations and the matrices d(i) occurring in 
Eq. (18b) result from the diagonalization of the matrices b,(ll;) = b(i?,) for i = 1, 2,...; 

dT(i) h(u;) d(i) = k2(i). 

Inserting the conversion relations, Eq. (15) or (18b), into one or into both sides of 
the continuity conditions (4a) and (or) (4b) we can find easily the modified Fp-’ 
and P “-matrices necessary to match solutions generated in different represen- 
tations in different regions of the integration range. Additional continuity con- 
ditions, at the boundaries of sectors, arise in the quasidiabatic representation, 

where 

F(q; i + 1) = O(i + 1; i) $(u;; i), (20) 

fi(i+ 1; i)= DT(i+ 1) T(Ui+I; Ui) D(i). 

The matrices O(i+ 1; i) = (“(r+O1:i) o(i:,, i,) become the overlap matrices between the 
local bases of subsequent sectors, i.e., 

o(i+1;i)=d7(i+1)(@(o;ui+1)@T(u;u,))d(i), Pa 1 

if the basis @ is complete [21] 
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3. APPLICATION OF THE ~-MATRIX APPROACH 

The T-matrix approach to solving the coupled equations for inelastic and reac- 
tive scattering has been basically established in papers [11] and [ 121. Some com- 
plementary remarks on symmetry of Y-matrices for equations in nondiabatic 
representations are given in Appendix B. Thus, here we confine ourselves to a 
schematic presentation of this approach which is aimed at introducing of a con- 
venient notation. The aspects to be visualized in such notation are: 

(1) the division of the integration range [up, u.?] which is induced by two 
factors: 

(a) the specific construction of the coordinate system, i.e., the division of 
CUF, ~$1 into the arrangements channels, the polar and the Cartesian 
region; 

Cu2, u.q = cup, 24: = 01 + [ zf; = 0, u;” ] 

ZZ t-u:, 24-‘-j+ cqc, uyj + [u;,u.; Cl + [u.~- c, uy, 

(b) requirements of numerical integration, i.e., a further division of each 
region into small sectors [u;, ui+ ,] for i= 1, 2,..., 

(2) t!?e shape (i.e., the representation) of the coupled equations actually 
integrated. 

Without writing the detailed (and lengthy) formulas we present the Y-matrix 
approach as a consequent reformulation of the standard (O-matrix) approach to 
the coupled equations and as a useful tool in this respect we exploit the matrix 
operation i introduced in [ 121 (see also Appendix A). 

The relation underlying the P-matrix formalism is the definition of an T-matrix 
corresponding to a given standard propagator Q(u”, u’); 

Y(u’, 24”) = L[z-o(ur~, u’)], 1-z -:, ; . 
( ) (21) 

Concerning the standard propagators for the coupled equations specified in the 
previous section, one point seems to be worth mentioning. Namely, in order to 
ensure uniform symmetry properties of the T-matrices in all representations con- 
sidered we make a little “unusual” choice of the Q-propagator for the coupled 
equations (3). Instead of propagating the solution vectors F(U) (Eq. (3a)) we 
consider the propagation of the vectors G(u) = (A;/) = Y(U) F(U), 

G(u”) = Q(u”, u’) G(d). (22) 

In the cases of the diabatic and the quasidiabatic equations, (Eqs. (17a) and (19a)), 
we deal directly with the solutions 5$(u) and F(u; i). The Q-matrices for 
propagation of these solutions are denoted by Q,(u”, u’) and 6(i, i - I), respec- 
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tively. G(i, i- 1) propagates between endpoints of ith sector, i.e., U’ = u, , and 
UU’U. 

Thel’structure of the Y-matrix formalism in its application to Eqs. (3) (4) is 
shown in Table I. The “addition” relations for the Y-type propagators given in this 
table can be checked by making use of the properties of the i-operation listed in 
Appendix A. All the Q-type propagators fulfill the condition of JP-unitarity, 
Eq. (Bl l), and consequently all the Y-type matrices are symmetric. The 
J--unitarity of the sector and region Q-propagators results from the properties 
of the coupling matrices in Eq. (3). In the case of the global and the channel 
propagators, Q and Q”, a = a, 7, this unitarity reflects also the properties of the 
matching matrices (Eq. ( 10)). 

Obviously, the global Q-propagator, a, and hence the global T-propagator, L, 
are related to the scattering matrix S. After some inspection of the formulas given in 
Table I in conjunction with the formulas (21) and (22) we find that the matrix L 
propagates the solutions of Eq. (3) in the following way: 

Remembering that the matrix A involved in the definition of g, (Eqs. (22), (4d)), 
vanishes at the points u,” and u,” and applying the above relation to the solutions 
F, and F>, (Eq. (13)) and their derivatives we derive the necessary formula for the 
matrix S, 

s= w-‘w*, (23) 

TABLE I 

R- and Y-Type Propagators of Solutions of Eqs. (3), (4) 

[u’, u”] Q(U”, ~‘1 (Eq. (22)) U(u’, u”) (Eq. (21)) 

sector 

cut-,> u,l o(i, i- 1) I(i- 1, i) 

i sectors 
luo. u,l o(i,O)=w(i, i- l)cu(i-l,O) I(0, i)=i[i[l(i-l,i)] I i[/(O,i-l)]] 

polar region, P, 
[uf, u,“] ld” , p. 

Cartesian region, C, 

I u,‘-‘, UZ] w( <I I’;, 

channel a, a = a, y QlJ = ““,>,~C P&,, 1’ L” = QQIC”] .yc- ‘I-QI’“]] 

entire range 
lU%> u,“l a=[- py’P’Im (a”)- I ” L= -i[i[L’] Ym~Imi[JL”J]] 

a.yc-P=(y--p-c)-I, yY-“=(y-“-‘)-‘, see Eq, (4c). 
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where 

The structure of propagators shown in Table I is applicable in principle also to the 
equations obtained after conversion to the diabatic and quasiadiabatic represen- 
tations. The Y-type propagators for these equations are denoted, as the Q-type 
propagators before, by the subscript “17” and by tilda, respectively. Obviously, the 
matching transformations Fp- ’ and FPy should be modified appropriately (see 
the end of Sect. 2). The relation for the accumulation of the sector Y-propagators 
in the quasiadiabatic involves additionally the overlap matrices 0 and reads 

?(o, i) = L[L[l(i- 1, i)] O(i; i- 1) 1LQ(O, i- l)] J. (24) 

The way of linking the Y-matrix formalism to computational practice is obvious. 
Combining a procedure for estimation of the sector Y-propagators with the 
“addition” relations listed in Table I we will get an algorithm for finding the 
propagator 3 in any desired part of the integration range. A variety of such 
procedures can be derived, of course, by applying either the approximate solution 
or the approxmate potential approach [ 11. We list below the Y-matrix algorithm 
investigated in this paper-the approximate solution algorithm developed in 
[ll, 121 as a generalization of the log-derivative method of Johnson [9]. It is 
applied to the present problem to give the region Y-propagator in the non-diabatic 
and in the diabatic representations. Thus, the following two versions of the 
algorithm are exploited: 

(A) The nondiabatic version gives the matrix I 

( 1) Divide the region considered, [uz, u,‘- ‘1 or [u,‘- =, ~2 1, for a = ~1, y, 
into M sectors of length 2h and denote: 

uk = u: + kh for k=O, 1,2 ,..., 2M, Q,,=u,, 

(2) Calculate matrices z, p, and r for the first sector 

z2 = 14 - 4h%( u2) - s,,, 2, 

p2=wo,2, 

r2 = -7 + 2h2b(uo) + t(u,; u2) so, 2tr(uo; u2). 
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(3) Add the subsequent Sectors, i.e., calculate zk + 2, Pk + 2r rk + z for 
k = 2, 4, 6 2M - ,..., 2, 

where 

Yk+2=Zk- [t(Uk;Uk+2)Sk,k+2tT(Uk;Uk+2)l~1, 

I’(“k+,;uk+2)h(uk+,)~(~k+,;~k+2) -I, 1 
~‘k,r+z=(-l + Sk,k+2) [‘(uk; uk+2). 

Determine the matrices f(u; uk + I) at u = uL, uk + , , uA + ,3,21 = uk + (2) h from the 
following formulas: 

i(“k;uk+2)=[1-~~(lrk)] ‘[I+~~(u,,,)+~~(.k+,)r(~k,,:.,+,)], 

t(“k+,;Uk+2)= ;-$+k+,) 
L 

’ 
1 [ 

-~-jiihAiuki21ic(uk+,,:2,:uk+,)], 

f(%+l3~2);Uk+L - )- 1-;Ab,,,;2,) 
1 1 

(4) Calculate the matrix I = (I: ;a) 

1, = r2,,.,lh, 4 = -pz,v,/6k 

4 = II‘, I, = - [1^2M - 7 + 2h2h(u2,)]/6h. 

(B) The diabatic version gives the matrix I,. Here the addition proceeds by 
half sectors defined as in case (A): 

Z k+L= k++k ’ 

for k = 0, 2, 4, 6 ,..., 2M - 2, 

z,,,=2-~bJuk+,)-zk ' for k = 1, 3, 5 ,..., 2M - i, 
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where 

b,(u,) = t’(u k; 4 b(4) eu,; 4 for k=O, 1,2 ,..., 2M, 

pk + 1 = ‘k- ‘pk 
rk+l=Yk+hP~Pk+l for k = 1, 2, 3, 4 ,..., 2M- 1 

PL4 

Cl -(h’/3)ho(UZ,~)-ZZ,~llh 

Simultaneously with performing these operations the problem (16) is solved (by 
the Runge-Kutta algorithm with the step size h) in order to get the matrices t(u,; U) 
for k = 0, 1, 2,..., 2A4. A convenient choice of U is: U = u,,. The obtained matrix I, can 
be converted, of course, to the matrix I (see Appendix B, Eq. (B12)). 

Though there is no approximate potential algorithm derived originally from the 
Y-matrix formalism we can easily adapt to this formalism the “g-matrix 
propagation” method of Light et al. [6-83. Since the approximate potential 
approach is intrinsicly connected with the quasiadiabatic representation we use as 
working quantities the matrices 7; T, and t defined above. These matrices as well as 
the global matrix z are related to the corresponding B-matrices of Light’s method 
[6] by the formula 

Y=II.%“Ip. (25) 

The modifications implied by the change of the working quantities can be con- 
veniently analysed by exploiting the properties of the operation i (Appendix A). 
Obviously, this operation is involved in the construction of the matrices 9 from the 
appropriate standard propagators. Substituting the expression: z = Z[r-fi] for the 
left-hand side of (25) we get after some manipulations the following formula for the 
global g-matrix; 

In the analogous way we can find also the respective formulas: for the channel 
:&‘-matrices, R” = i[Z- J&‘J], a = M, y, for the region g-matrices, 

r’ = L[Z JSJ] for r = P,, C,, a = a, y, 

and for the sector W-matrices, r(i- 1, 1) = i[ZpJG(i, i- 1) J]. It becomes apparent 
from these formulas that the simple renumbering of the blocks of the matrices 0 in 
the original procedure for the sector propagators r suffices to make the procedure 
work as a generator of the sector propagators ?: Moreover, the adaptation of the 
entire W-matrix accumulation procedure to these propagators appears to be only a 
matter of interchanging the role of the matrices C, and C,, and the matrices M, 
and M, in the matching transformations. The only other change concerns the final 
procedure for the matrix S which should be adjusted to the formula (23). 
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It should be noted that all the introduced modifications cannot affect the 
efficiency of the original method. This fact is consistent with the conclusion reached 
earlier [16] that there should be no practical difference between the Y- and .%-type 
propagators as long as the approximate potential is considered for their deter- 
mination. Thus, the adaptation of the “g-matrix propagation” method to the 
Y-matrix formalism has mainly an aesthetical justification: we wish to deal with the 
same propagators in all procedures used in the computational investigations. The 
goals and the results of the computations are reported in the next section. 

4. COMPUTATIONAL INVESTIGATIONS: DESCRIPTION OF THE TESTS 
AND DISCUSSION OF THE RESULTS 

The questions of interest are: 

(1) How do the approximate solution Y-matrix algorithms compare with the 
approximate potential, i.e., the “g-matrix propagation,” algorithm in respect of 
accuracy and speed in solving a problem typical for the considered group of 
collision processes. 

(2) To what degree can the quality of the “.%-matrix propagation” method be 
enhanced by a combination with the approximate solution p-matrix algorithms. 

Intending to answer these questions, at least in part, we created and tested the 
following modified versions of the RXNlD program [S]: 

(1) the approximate potential version (AP) which is the Y-matrix adaptation 
of the original program, ’ 

’ The step-predicting algorithm in this program is designed, as described in the original papers on the 
“g-matrix propagation” method [6, 71, to keep control over the first correction term to the Magnus 
approximation (this is the approximation made in Eq. (19a)) and over the rate of change of the 
quasiadiabatic basis. The coded formulas for the size of the (i + l)-th sector, h, c l = u, + I ~ u,, are 

where 

k+,= BSTEP/[h’(i)]’ ‘, 2,. , <* =/i CUPMAX/I[C(i;i-- I)],,-/ 7 1 

“LX” is the position of the minimum of V(ti,, V) and U, is the midpoint of the ith sector. d,(r~iw) is de&red 
analogously to d,(rli V,) and w(U,) = [(d/du*) V(U,, v&)/~]‘!~. h,, , is finally chosen as min(i,+ ,, h,, ,) 
and is required to be in the [STPMIN, STPMAX] interval. CUPMAX, BSTEP, STPMIN, and 
STPMAX are input parameters. In our tests: STPMIN = 0.01 bohr, STPMAX = 1 bohr, CUPMAX 
ranged from 0.12 to 0.03 and BSTEP ranged from 10m4 to lo-‘. 
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(2) the approximate solution versions, ASnd and ASd, in which the 
generalized log-derivative algorithms, the nondiabatic version and the diabatic 
version, respectively, are used in all regions of the reaction coordinate. 

(3) the hybrid versions, ASnd-AP and ASd-AP, in which the respective 
approximate solution algorithms are used in the polar regions only. 

It seems appropriate to give some details on how the approximate solution 
algorithms were implemented into the RXNlD program. First, some steps were 
needed to account for the change of the wavefunction representation. To exploit the 
procedures of the original program to possibly high degree we chose the non- 
diabatic basis in the form of perturbed harmonic oscillator eigenfunctions, i.e., we 
set 

Vo(u, u) = fft(u)[u - i?(u)]’ in Eq. (8). 

With this choice the evaluation of the matrices b, C,, and Mk for k = 1,2, did not 
require any changes and the following simple formula could be used for the 
evaluation of the matrix A. 

where 

(qL,= -(ag)ji=6i.j-2JGTiFG~ 

(a,),,= -(a,-),,=6i,j- 1 $Z for i,j=O, 1, 2, 3 ,..., 

P=$ii 

The variable potential parameters, n(u) and D”(U), we determined as polynomial 
approximations to the values &(uj) and u”(ui) obtained by the procedure that tits 
parabolas to the A-B-C potential surface in the original RXNlD program. The 
points ui were chosen as equidistant points covering a given region of the reaction 
coordinate. Planning to use eventually the nondiabatic representation in the polar 
regions only we forced the first and the second derivatives of R(u) and G(U) to 
vanish at the polar-Cartesian boundaries. The polynomial coeflicients for ,4(u) and 
G(u) determined in this way served also to calculate the parameters of the 
quasiadiabatic basis for the approximate potential algorithm. 

Obviously, hoping to improve the RXNID program by introducing the 
approximate solution algorithms we had to keep in mind the overall usefulness of 
the program in serial calculations. Therefore, while coding these algorithms we tried 
to make possibly large savings in computer time needed in second (and further) 
energy calculations for a given collision system. Exploiting the energy independence 
of the first derivative coupling matrix we excluded from these calculations the 
operations of the evaluation of the transformations t in both algorithms. Following 
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the original program we simplified also the evaluation of the coupling matrix h by 
applying the formula 

in which E&U) is the energy dependent part of b (see Eq. (5b)) and Eref denotes the 
energy in the first energy calculation. An analogous formula was used also for the 
matrix b,. Some necessary matrices should be stored, of course, in the first energy 
calculation. These are the matrices b(uk), i;(u,) for k = 0, 1, 2,..., M, and t(u, ; uk + 2), 
f(u, + , ; z+. + 2) for k = 0, 2,4, 6 ,..., M - 2, in the case of the algorithm A (the non- 
diabatic version) and the matrices b,,(~~), i;,(u,) for k = 0, 1, 2,..., M, and t(u,; U) in 
the case of the diabatic version. 

With the same purpose of speeding up serial calculations we considered also the 
possibility of incorporating into the approximate solution algorithms a procedure 
analogous to the basis contraction in the “.&!-matrix propagation” method. The 
procedure consists in reducing the dimension of the problem by using only 
appropriate blocks of all matrices stored in first energy calculation. For similar 
reasons as in the original RXNl D program this basis contraction could be expected 
to work within the nondiabatic version of the log-derivative algorithm. It must fail, 
however, when the diabatic version is used. 

To keep the storage requirements on a reasonable level we did not include the 
second energy facilities into the purely approximate solution versions of the 
program. 

Now we proceed to the presentation of the computational material which has 
been collected to characterize the performance of the modified versions of the 
RXNlD program. This material concerns solving of the coupled equations for the 
H + H, collinear reaction on the Porter-Karplus potential surface [ 171. Some tests 
were performed also on the F+ H, reaction on the Muckerman-5 potential surface 
1181. The form of our presentation is chosen to expose the features of primary 
importance for a comparison of the approximate solution and the approximate 
potential approaches; i.e., convergence properties with respect to sector width and 
computational effort required at one sector. We paid less attention to the con- 
vergence with respect to the basis set length because we did not expect this feature 
to be significant for assessing relative effectiveness of the methods tested. We were, 
however, indirectly concerned with this convergence when we examined the basis 
contraction procedure. 

In our studies of the convergence properties we measured the accuracy of an 
individual calculation by the r.m.s. fractional error, p, of the transition propability 
matrix, P, which was calculated according to the formula: 

P=W:,-No,)-’ ( c 
u.0’ = 1.y t = I j = I 

where 
N =NOP+N”P 

OP I Y . 
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As the reference values, (P n c as)jj for a, a’ = a, y, we used the results of the most 
accurate calculation done for a given set of coupled equations. The reference 
calculations for the error estimations given in this paper are summarized in Tables 
II and III. 

We start the analysis of the information obtained from our investigations with a 
discussion of the accuracy of the results yielded by the modified versions of the 
RXNlD program. 

The r.m.s. fractional errors of the transition probability matrices for the H + H, 
system calculated with each version at several energies are shown in Fig. 1 as 
functions of the number of sectors used for solving the coupled equations in the 
fixed integration range. An analogous error plot for the F+ H, system is made in 
Fig. 2. The overall picture of the relative accuracy of the methods is generally con- 
sistent with what is well known on the properties of the appr. solution and the 
appr. potential approaches from their applications to inelastic (nonreactive) scatter- 
ing calculations. At low energies and for a given number of sectors both the ASnd 
and ASd versions give more accurate results than the AP version (Fig. la). The dif- 
ferences diminish when the energy grows (Fig. Id). The AS versions work usually 

TABLE II 

Accurate Solutions of the Test Problems H, + H 2 H + H, Reaction on 
the Porter-Karplus Potential Surface [ 171 

Test Energy“ No. of channels Probability matrixh 
No. E (ev) N P I f. 3 P,,, 

1 0.87060 10 0.41016 0.18030 0.18228 0.22726 
0.18030 0.46419 0.22726 0.12825 

2 0.89760 10 0.03214 0.12389 0.66320 0.18077 
0.12389 0.40271 0.18077 0.29264 

3 0.89760 12 0.03214 0.12390 0.66323 0.18073 
0.12390 0.40287 0.18073 0.29250 

4 1.0 10 0.07666 0.08841 0.59624 0.23868 
0.08841 0.16381 0.23868 0.50909 

5 1.3966 12 0.25836 0.21258 0.06732 0.12986 0.253 13 
0.21258 0.12315 0.05516 0.25313 0.25214 
0.06732 0.05516 0.21204 0.07875 0.10384 

6 F+H>i? FH + H reaction on the Muckerman-5 potential surface [18] 
E= 1.75eV, N= 12 

0.07875 
0.10384 
0.48288 

P z-1 p,-, P,,, 

0.65134 0.00099( -2) 0.00114 0.08406 0.26345 0.98182 0.01812 0.00047( - 1) 0.00274( - 3) 
0.01812 0.97533 0.05013( - 1) 0.00399( - 1) 
0.00047( - 1) 0.05013( - 1) 0.87147 0.03941 
0.00274( - 3) 0.00399( - 1) 0.3941 0.69673 

” Energy is measured from the bottom of the potential valley in the asymptotic y (exit) channel. 
* The probabilities are correct to all except the last significant figure shown. 
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TABLE III 

Some Details on Calculation of the Probabilities Shown in Table II 

Test 
No. Method 

Number of sectors“ 
M 

(M:', M:', M.7, M; )h 

1-3 ASnd 371 
(I 18, 253, -, -)’ 

4, 5 ASnd 551 
(177,380, -, -) 

6 ASd 588 
(98, 157, 112,221) 

“The length of sectors is 2h. h=0.0075 bohr in tests 1-3, 6 and h =0.005 bohr in test 4, 5. 
h MI denotes the number of sectors used in the region r (Polar or Cartesian) of the arrangement 

channel c (c = a, y). 
‘ It sutkies to integrate the coupled equations for the symmetric H + Hz reaction in one arrangement 

channel only. 

FIG. 1. Errors of the propability matrices for the H+ H2 reaction (test problems no. 1, 2,4, 5 in 
Table II) obtained by the AP ( q ), ASnd ( x ), ASd ( + ), ASnd-AP (0 ), and ASd-AP (a ) methods 
versus the number of sectors used (M). The dotted lines show perfect M-4 rate of convergence. 
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number of sectors 

50 100 200 
1 

FIG. 2. Same as in Fig. 1 for the F+ Hz system (test problem no. 6 in Table II). 

better within higher accuracy regime. Of course, the hybrid versions deserve most 
attention. These versions yield results that are about 10 times more accurate than 
those obtained with the AP version when the same number of sectors is used. They 
are also better than these of the AS versions if not too high accuracy is required. 

To visualize the origins of this superiority of the hybrid versions we give more 
details on the performance of the algorithms constituting them in different regions 
of the integration range. In Fig. 3 we present an accuracy comparison of the AS and 
the AP algorithms in solving the coupled equations in the polar and in the Car- 
tesian regions. The error of the probability matrix is plotted versus the number of 
sectors which was varied in the specified region only. The second region was 
integrated “exactly,” i.e., the same way as in the reference calculation (see 
Table III). As we see the AS algorithms excel the AP method considerably in the 
polar region. The AP algorithm becomes, however, superior in the Cartesian 
region. 

Another measure of the performance of the AS and the AP algorithms is given in 
Figs. 4 and 5 by showing how the number of sectors necessary to integrate over a 
unit distance, i.e., dM/du, was changing along the integration range in the 

FIG. 3. Errors of the probability matrix for the Hf H2 reaction at E=0.89760 eV (test problem 
no. 2 in Table II) versus the number of sectors (M) used to integrate the coupled equations by the AP 
( U ), ASnd ( x ), and ASd ( + ) methods in the region of the reaction coordinate specified in the comer of 
each panel. Outside this region the equations were integrated “exactly,” i.e., by the ASnd method with 
the step size h = 0.0075 bohr (see Table III). The dotted lines are “reference” Mm4 lines. 

5x1 6X ?-I I 
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L, bohr 

FIG. 4. Comparison of dM/du for the AP ( + ), ASnd (-), and ASd (---) methods in the 12 channel 
calculations for the H + H2 reaction at E= 1.3966 eV. The errors are given in Table V (case 4b). The 
arrow marks the polar-Cartesian boundary. 

calculation which yielded the transition matrices of approximately the same 
accuracy. The quantity &4(u)/& was evaluated from the formula 

dM(u) N M(u) - M(u - Au) 
du Au ’ 

where M(u) denotes the number of sectors used to integrate over the interval 
[0, u]. Obviously, in the AS algorithms this quantity is constant and equal to 1/2h 
where h is the step size used. The fact to be noted is that the corresponding 
horizontal lines in Figs. 4 and 5 intersect the curves describing the AP algorithm 
near the polar-Cartesian boundaries. This is an indication that these boundaries are 
on average the best points for switching between the AS and the AP algorithms in 
the hybrid programs. Returning to Fig. 3 we would like to comment on the relative 
accuracy of the AS algorithms themselves. The figure shows clearly that both the 
ASnd and ASd algorithms perform almost identically in the Cartesian region. In the 
polar region the diabatic version is more accurate. For an explanation we have to 
refer to the derivation of these algorithms [ 11, 121 and remember that in both cases 
it was based on the same discretization procedure of the coupled equations 
obtained after the first derivative coupling had been eliminated. Different 
approximate ways, however, were applied to determine the transformation 
necessary for this elimination. Therefore the algorithms may differ in accuracy 
depending on the magnitude of the first derivative coupling. In the Cartesian 
regions this coupling is much smaller than in the polar regions. Apparently, it has 
negligible influence on the probability matrix in the case shown in Fig. 3. 

3 2 10 1’2 3 4 5 
u, bohr 

FIG. 5. Same as in Fig. 4 but for the F+ H, calculations reported in Table VI. The letters in the 
upper corners denote the respective arrangement channels. 
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The solid lines are drawn in Fig. 3 as well as in Figs. 1 and 2 to exhibit the rate of 
convergence in the AS and in the AP methods with respect to the number of sectors 
used, M. The uniform Mp4- (or h4) type convergence was always found in the 
diabatic version of the log-derivative algorithm. The convergence in the nondiabatic 
version of this algorithm must be, of course, somewhat affected by the less accurate 
treatment of the first derivative coupling. We noted a departure from the h4 rate 
especially at larger values of h. In most tested cases the result obtained by the AP 
method converged at a rate definitely lower than Mp4. 

To get an estimation of the rate of convergence in the hybrid versions we have to 
look at the broken lines in Fig. 1. It should be made clear, however, that only the 
best results obtained for a given number of sectors are joined by these lines. 

In practice the convergence can be much less uniform. Some efforts must always 
be made to choose the optimal set of integration parameters in the polar and in the 
Cartesian regions, i.e., to achieve a tolerable accuracy with a minimal number of 
sectors. The average slopes of the broken lines give in fact the upper limits of the 
rate of convergence possible to obtain by the hybrid methods in the cases shown. In 
general, the convergence in the hybrid method does not reach the Me4 level. 

Now we direct our considerations toward an estimation of the computational 
effort required by the tested versions of the RXNlD program to achieve a given 
accuracy of the results. To this end, we should add to what was stated above con- 
cerning the accuracy dependence on the number of sectors used in the AP and in 
the AS methods a comparison of the C.P.U. times spent at one sector. On the base 
of the tests made on the H+ H, and FS H, systems we can compare average 
values of these times for the first and second energy calculations and for the number 
of coupled channels ranging from 5 to 12. This is done in Fig. 6. The unit used there 
is the time per sector needed to integrate the ten channel problem by the AP 
method at first energy. As expected, the relative differences in the C.P.U. time per 
sector encountered between the AP and the AS methods, applied to the rather 

I 
5 6 7 8 9 10 11 12 

number of channels 

FIG. 6. C.P.U. times required at one sector by the AP (Cl), ASnd ( x ), and ASd ( + ) methods at 
first (-) and at second (---) energies vs the number of channels in the close coupled equations. All 
times shown arc relative to the time per sector needed by the AP method in the 10 channel first energy 
calculation. 
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small problems, are not striking. They are of order of 10% for the ten channel 
problem at first energy. Somewhat larger are the differences between the AP and 
the ASd methods at second energies. This can perhaps be better seen from the num- 
bers given in Table IV. This table exhibits also the slight differences, not shown in 
Fig. 6, between the times needed in the polar and in the Cartesian regions. 
Obviously, the times given in Table IV, and drawn in Fig. 6 do not measure 
rigorously the computational requirements of the tested methods. They do reflect, 
however, the quantitative relations holding in this respect. Namely, 

(1) At first energy and in one sector both AS methods are less time-consum- 
ing than the AP method. For larger systems of coupled equations this is expected to 
become even more visible than in Fig. 6. 

(2) At second energies the time requirements in the AP method are smaller 
than in the ASnd method but they remain larger than in the ASd method (about 
1.3 times in the cases shown in Fig. 6). 

The final comparison of the AP version of the RXNlD program with the AS and 
with the hybrid versions in respect to the efficiency in solving the test problems is 
made in Tables V and VI for some cases representative for our investigations, The 
efficiency is defined as one over the total C.P.U. time obtained after multiplying the 
numbers of sectors used (the third column) by the C.P.U. times given in Table IV. 
Obviously, with this definition one can compare calculations of the same level of 
accuracy only. The efficiency estimations given in Tables V and VI prove 
definitively the purposefulness of inserting the log-derivative algorithms into the 
RXNlD program. The gain in efficiency in both hybrid versions is visible in all 
reported cases. The best effect is achieved in the ASd-AP version which is about 
twice as efficient as the AP version in the first as well as in the second energy 
calculation. We can note also from these tables that the hydrid versions are better 
suited for more accurate calculations. 

The last question we would like to answer concerns the applicability of the 
hybrid versions to serial calculations for one collision system at many energies. 
Though no proof of superiority of the ASnd-AP version to the ASd-AP version has 

TABLE IV 

Time” per Sector in First (El ) and Second (E2) Energy Calculations 

Method 
N= 10 (El) N= 12 (El) N= 10 

Polar Cart Polar Cart (n) 

AP 1.0 0.90 1.49 1.38 0.32 
ASnd 0.90 0.88 1.32 1.25 0.37 
ASd 0.93 0.92 1.33 1.27 0.25 

a All times are relative to the time per sector needed by the AP method in the 10 channel first energy 
calculation. 



TABLE V 

Efficiency Comparison of the Methods in Solving the N-channel H + H, Problem at 
First (El) and at Second (E2) Energy 

Method 
Error 
px to3 

Number of sectors Efficiency 
M (MP, MC) (C.P.U. time) ’ a 

Case 1. El =0.89760 eV, N= 10 
AP 3.33 
ASnd 2.81 

ASd 2.17 
ASnd-AP 2.69 
ASd-AP 2.24 

Case 2. E2 = 0.8960 eV, El = 1 .O eV, N = IO 
AP 3.28 

ASnd-AP 2.69 

ASd-AP 2.24 

Case 3. El = 1.0 eV, N = 10 
(a) AP 1.59 

ASnd 1.68 
ASnd-AP 1.54 
ASd-AP 1.88 

(b) AP 0.336 

ASnd-AP 0.284 
ASd-AP 0.267 

Case 4. El = 1.3966 eV, N = 12 

(a) AP 2.73 

ASnd-AP 1.67 
ASd-AP 1.68 

(b) AP 0.160 
ASnd 0.144 
ASd 0.159 
ASnd-AP 0.156 
ASd-AP 0.174 

64 (47,!4) 1.0 
45 (14,31) 1.5 
45 (14,31) 1.4 
32 (14, 18) 2.1 
32 (14, 18) 2.0 

66 (49,18) 2.8 
32 (14, 18) 5.4 
32 (14, 18) 6.4 

51 (39,12) I.0 
45 (14,31) 1.2 

47 (29,18) 1.2 
32 (14, 18) 1.7 

106 (72, 34) 1.0 
77 (59,18) 1.5 
47 (29.18) 2.4 

53 (41, 12) 1.0 
35 (22,13) 1.6 

30 (17,13) 1.9 
145 (111,34) 1.0 
139 (44,95) 1.2 
92 (29,63) 1.8 
78 (44,34) 2.0 
63 (29,34) 2.5 

“The times are relative to the first energy calculations by the AP method 

TABLE VI 

Efficiency Comparison of the Methods on the F+ H, Problem 

Method 
Error Number of sectors Efficiency 

P M (MC, M,C,M;,M;) (C.P.U. time)-’ 0 

El=l,75eV, N=l2 
AP 
ASnd 
ASd 
ASnd-AP 
ASd-AP 

0.044 175 (73, 11, 75, 16) 1.0 
0.044 220 (37,58,42,83) 0.9 
0.032 146 (24, 39,28, 55) 1.4 
0.044 108 (37, 12,42, 17) 1.8 
0.030 74 (24, 9,28,13) 2.6 

” See footnote in Table V 
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10.2 AP method 

1m3 

I- 
104 

ASnd-AP method 

FIG. 7. Errors of the probability matrix for the H + H, reaction at E = 0.89760 eV vs the number of 
channels propagated in the AP and in the ASnd-AP methods. The points joined by the solid lines con- 
cern the first energy calculations with uncontracted basis sets whereas the broken lines describe the con- 
vergence in the second energy calculations, but for El = El, with respect to the basis sets contracted 
from N = 12 to P channels where P ranges from 11 to 5. The sectorization of the integration range (see 
footnotes h and ( in Table III) was: M= 65 (MP = 48, MC= 17) in the AP method and M = 32 
(Mp = 14, M’= 18) in the ASnd-AP method. 

been given so far there is a reason to expect that in serial calculations this version 
may be preferable. This is because of its ability to work with contracted bases. 

The basis contraction could be a profitable procedure but, it should be said, that 
so far this is not a quite certain point yet. In fact there were some reports 
(e.g., [ 191) about unsatisfactory convergence with respect to the contracted basis 
length in the original “&?-matrix propagation” method. However, we have found 
some evidence that after combining this method with the log-derivative algorithm 
the situation improves. For an example we refer to Fig. 7 which gives a comparison 
of convergence with respect to the uncontracted and to the contracted basis length 
in the AP version and in the hybrid ASnd-AP version of the RXNlD program. 
Looking at the solid lines in both panels of this figure we might expect that the 12 
channel could be contracted to as few as 7 channels without causing any major 
deterioration of the results. This expectation is in fact confirmed in the hybrid ver- 
sion (the broken line is close to the solid line in the lower pannel) whereas in the 
AP version we observe a significant deterioration of the accuracy of the results 
obtained with contracted bases shorter than 10 channels. 

Summarizing the findings of this work, particularly these concerning the perfor- 
mance of the hybrid versions of the RXNlD program; we can state that the 
approximate solution Y-matrix (i.e., the generalized log-derivative) methods make 
a significant contribution to the improvement of the numerical techniques available 
for quantum-mechanical investigations of reactive molecular collisions. Obviously, 
there are many different trends in these investigations and the range of com- 
putational requirements associated with them is wider than that covered in the 
present study. 
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In the continuation of the present work we plan to apply the hybrid methods to 
the reactive collision problems formulated in hyperspherical coordinates [24]. 

APPENDIX A. THE OPERATIONS 

The definition of ~6 

L[X] = 
( 

-X;lX, X,’ 
x, -X,X,‘X, X,X;’ ) ’ 

where 

and det X, # 0. 

The definition of i’ 

i’[X’] = (Q-X])’ 

(Al 1 

(A21 

Properties of l: 

(a) U[X] =X, 
(b) i[X-‘1 =JL[X] J, 
(c) L[JXJ] = (i[X])-‘, where J= (y A). 

(d) &V; ;J =tT;’ ;)i[x](; y,, (A3) 

(e) J%C~ ~JXl =(A i’J iCXl(~ gI), h w ere T, (k = 1, 2) are nonsingular 
matrices. 

APPENDIXB: ON SYMMETRY OF THE ~-MATRIX APPROACH TO 
COUPLED EQUATIONS IN NONDIABATIC REPRESENTATION 

Let us specify the objects of consideration in this section: 

(1) the matrix differential equation; 

[ -$+A(u)$+B(u) Ic/(u)=O. 1 (Bl) 

The N x N (real) matrices A and B are required to have the properties (which stand 
here for a definition of a nondiabatic representation): 

AT= ---A, B=b+;fA+;A’, bT= b, 
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(2) standard, or Q-type, propagators of solutions of Eq. (Bl). Under the term 
“standard propagator” we mean any 2N x 2N matrix Q(u, u’) = (2: z:) which 
satisfies a first order differential equation equivalent to Eq. (B2), trough a transfor- 
mation not involving, however, solutions of any other differential equations,” and 
the normalization condition: Q( u’, u’) = 1. 

(3) g-matrices, or Y-type propagators; 9 = (${ $); 

Y(u), u”) = i[Znqu”, u’)], 
-1 0 

I-= ol. ( ) (B3) 

First, we consider the most “obvious” choice of the standard propagator for 
Eq. (Bl ), namely the matrix Q(u, u’) satisfying the equations; 

&u, d)=( TB ‘,)n(., d), lqu’, u’)= 1, (B4) 

and we denote the corresponding P-propagator by L. The following relation holds 
for !S as a consequence of the properties of the matrices A and B, Eq. (B2), 

QT(U”, u’) U(u”) Lyu”, u’) = U(u’), (B5) 

where 

U(u)= 

It can be shown that the corresponding relation for the matrix L reads [ 121, 

L( u’, u”) = L’(u’, u”) + 
-A(d) 0 

0 > A(u”) 

As an intermediate step in the proof we can use the following form of Eq. (B5) 
obtained by exploiting the properties (A2), (A3) of the operation i: 

i’[L L7‘(u’, u”)] U(u”) i[L(u’, u”) z-1 = U(u’), I-=--I. 

Thus, the matrix L is not symmetric. The relation (B6) suggests, however, construc- 
tion of another symmetric matrix z; 

L(u’, u”) = L(u’, u”) + 4 
A(u’) 0 

o 
> -A(u”) ’ 

which can be used instead of L as a propagator for the coupled equations in the 
nondiabatic representation. The same suggestion, though preceded by a different 

*This is the point where we differentiate the propagators in nondiabatic representation from the 
propagators in diabatic representations. 
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argumentation and concerning the log-derivative matrix (i.e., the block Lt4’) only 
has been made recently by Macek [22]. Actually, the matrix L” had been already 
exploited in the derivation of the generalized log-derivative method [IZ]. 

In the paper [ 123 we considered the matrix l as a mixture of the Z-type 
propagators in the nondiabatic and in two different diabatic representations, 

L(u’, u”) = 
( 
Lp(u’, u”) LC2)(u’, u”) 

) L’3’(u’, u”) L$‘(u’, u”) ’ 038) 

where L,(u’, u”) = L[Z-Q,(u”, u’)] for ti = u’, u”. 52, is the standard propagator 
which satisfies the equations 

with the matrix 6, related to the matrix b through the relations (17a), (16). 
Here we complete the Y-matrix formalism with the relation 

Z(u’, 24”) = t[z-f&f”, u’)], (B9) 

and we state that the matrix b satisfies the following equations: 

-gQ u, u’) = 
-&4(u) 1 

-b(u) -$4(u) 
fib, u’), d(u’, u’) = 1. @lOI 

d represents simply another choice of a standard propagator for Eq. (Bl). Thus, 
according to the assumed definitions the matrix L” can be viewed in the same way as 
the matrix L, i.e., as an T-type propagator in the nondiabatic representation. 
Clearly, the difference in the symmetry properties between the matrices z and L 
should be visible at the level of the corresponding standard propagators. Indeed, 
the relation (B5) for the matrix Q rewritten in terms of the matrix d takes the form 
of the following unitarity (J--unitarity) condition: 

W(u”, u’) Jp W(u”, u’) = J. ) where J_ = 

The same condition satisfies the matrix Q, and it is a matter of some algebraic 
manipulations to check that the J_-unitarity of the standard propagators really 
guarantees symmetry of the corresponding Y-matrices. 

To give evidence of consistency of the formula (B9) with the previous formula 
(B8) we show that both formulas lead to the same differential equations for the 
matrix z. To this end we exploit the differential equations derived elsewhere 
[ 11, 231 in the form valid generally for any propagator l(u’, u”), I = (g $, related to 
a standard propagator a(~“, u’) trough the operation i; 1(u’, u”) = L[Z- w(u”, u’)]. 
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These equations involve the coupling matrix a, a = (g: z’) occurring in the initial 
value problem for o, 

f o(u, u’) = a(u) w(u, u’), w(u’, u’) = 1, 

and read 

$I’( u’, u) = - &(u’, u) Q*lJU’, u), 

&A u’, u) = 12(24’, u)[ --a, + QllJU’, u)], 

f Mu’, u) = CQ, + LJU’, u) %I Mu’, u), 

f/4( u’,u)= -a3+a,l,(u’,u)-l,(u’,u)a, 
+ 14(U’, U) Q214(U', U). 

One set of equations for the matrix 2 we get by the simple substitution: 

a= 
-iA 1 
-/, > -;A . 

To derive the set originating in the formula (BS) we have, of course, substitute dif- 
ferent a’s for different blocks of z, i.e., ( _O,,, A) with U = u’, u or (_“B l,,,). Moreover, 
to get the correct form of (d/&) L,(,“)( u’, U) we have to proceed through the inter- 
mediate step of transforming LIp’(u’, U) to a different diabatic representation, e.g., 
qz’( u’, u) = t( u; u’) L2’( u’, u) t’(u; u’). To see the identity of both systems we have 
to refer also to the more general form of Eq. (B8) (given in [ 12]), 

L(u’, u”) = ( 
t(u’; ii) o $; ti)) Uu’, If) (“;; u) $!; u)). (B’2) 
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